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We give a quantitative estimate of L' norms of non-harmonic trigonometric polynomials. This extends the result

of Konyagin and Mc Gehee, Pigno, Smith.

1. Littlewood Conjecture

In 1948 Littlewood conjectured that, when n; < ng < - --

The first non-trivial estimate was obtained by Cohen who proved that Ly >
to Pichorides who proved that Ly > ClnN/(Inln N)2.

Improvements on the constant were made by Stegeman and Yabuta and a generalisation to the real case is due to Nazarov, Hudson and Leckband.

2. MPS Theorem

For ny <ng < ---
complex numbers,
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The particular case (ar)r = 1 leads to the so-
lution of the Littlewood problem.

3.Stegeman & Yabuta Theorem

If n1 < ng < --- < npy integers and ay,...,an
complex numbers all of modulus larger than 1
then
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4. Hudson & Leckband Theorem

Hudson and Leckband extended previous result

to non-integer frequencies by using a perturba-
tion argument.

Theorem. For \{ < Ao <
bers and aq, . ..

. < AN real num-
,an complex numbers,
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5. Nazarov Theorem

Nazarov showed that such a result holds not only
when 1" — +o00 but as soon as 1" > 1:

Theorem. For T > 1, there exists a constant
C'r such that, for A1 < Aoy < --- < Ay real num-
bers verifying | A\ — Xe| > |k — €| and aq,...,an
complex numbers,
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8. Perspectives

X Validity of Nazarov theorem in the case
T =1.

® (Generalisation to the multidimensional
case (nx € Z", r > 1).

X (Quantitative version of Nazarov Theorem
For 1" small enough .

Ly := int

< np are integers, there exists a universal constant (' such that

dt > C'log N.
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C(In N/Inln N)'/® for N > 4. Subsequent improvements are due
In 1981, Littlewood’s conjecture was proved by Konyagin and Mc Gehee, Pigno, Smith.

6. Quantitative Extension Of Nazarov Theorem

Let A{ < Ay < --- < Ay be N distinct real numbers and aq,...,ay be complex numbers. Then
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173 If further aq,...,ay all have modulus larger than 1, |ag| > 1 then
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174 Assume further that for k,¢ =1,..., N, |Ax — \¢| > |k — £|, then for T > 72 we have
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7. Strategy Of The Proof

Let
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We then write |ax| = apur with up complex numbers of modulus 1 and define U(t) = Z - €
k=1
AL
By orthogonality, S = lim — / ¢(t)U (t) dt. The second step will consist in correcting U into

V in such a way that ||V < A where A is a constant then we multiply by ax and sum over k to
get
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as desired.
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