The Littlewood Problem And NonHarmonic Fourier Series.

Chadi SABA joint work with P. JAMING and K. KELLAY
We give a quantitative estimate of L^{1} norms of non-harmonic trigonometric polynomials. This extends the result of Konyagin and Mc Gehee, Pigno, Smith.

1. Littlewood Conjecture

In 1948 Littlewood conjectured that, when $n_{1}<n_{2}<\cdots<n_{N}$ are integers, there exists a universal constant C such that

$$
L_{N}:=\inf _{n_{1}<n_{2}<\cdots<n_{N}} \int_{-1 / 2}^{1 / 2}\left|\sum_{k=1}^{N} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq C \log N
$$

The first non-trivial estimate was obtained by Cohen who proved that $L_{N} \geq C(\ln N / \ln \ln N)^{1 / 8}$ for $N \geq 4$. Subsequent improvements are due to Pichorides who proved that $L_{N} \geq C \ln N /(\ln \ln N)^{2}$. In 1981, Littlewood's conjecture was proved by Konyagin and Mc Gehee, Pigno, Smith. Improvements on the constant were made by Stegeman and Yabuta and a generalisation to the real case is due to Nazarov, Hudson and Leckband.

2. MPS Theorem

For $n_{1}<n_{2}<\cdots<n_{N}$ integers and a_{1}, \ldots, a_{N} complex numbers,

$$
\int_{-1 / 2}^{1 / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq \frac{1}{30} \sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k}
$$

The particular case $\left(a_{k}\right)_{k}=1$ leads to the solution of the Littlewood problem.

3.Stegeman \& Yabuta Theorem

If $n_{1}<n_{2}<\cdots<n_{N}$ integers and a_{1}, \ldots, a_{N} complex numbers all of modulus larger than 1 then

$$
\int_{-1 / 2}^{1 / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq \frac{4}{\pi^{3}} \ln N
$$

4. Hudson \& Leckband Theorem

Hudson and Leckband extended previous result to non-integer frequencies by using a perturbation argument.

Theorem. For $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}$ real numbers and a_{1}, \ldots, a_{N} complex numbers,
$\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{1}{30} \sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k}$.

5. Nazarov Theorem

Nazarov showed that such a result holds not only when $T \rightarrow+\infty$ but as soon as $T>1$:

Theorem. For $\mathbf{T}>\mathbf{1}$, there exists a constant C_{T} such that, for $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}$ real numbers verifying $\left|\lambda_{k}-\lambda_{\ell}\right| \geq|k-\ell|$ and a_{1}, \ldots, a_{N} complex numbers,

$$
\int_{-T / 2}^{T / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq C_{T} \sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k} .
$$

$C_{T}=? ?$

8. Perspectives

区 Validity of Nazarov theorem in the case $T=1$.
$\bar{\square}$ Generalisation to the multidimensional case ($n_{k} \in \mathbb{Z}^{r}, r>1$).
$\boxed{\square}$ Quantitative version of Nazarov Theorem For T small enough

6. Quantitative Extension Of Nazarov Theorem

Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}$ be N distinct real numbers and a_{1}, \ldots, a_{N} be complex numbers. Then
172 We have

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{1}{26} \sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k+1} .
$$

173 If further a_{1}, \ldots, a_{N} all have modulus larger than $1,\left|a_{k}\right| \geq 1$ then

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{4}{\pi^{3}} \ln N
$$

174 Assume further that for $k, \ell=1, \ldots, N,\left|\lambda_{k}-\lambda_{\ell}\right| \geq|k-\ell|$, then for $T \geq 72$ we have

$$
\frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=1}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{1}{122} \sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k+1}
$$

7. Strategy Of The Proof

Let

$$
\phi(t)=\sum_{k=1}^{N} a_{k} e^{2 \pi i \lambda_{k} t} \quad \text { and } \quad S=\sum_{k=1}^{N} \frac{\left|a_{k}\right|}{k} .
$$

We then write $\left|a_{k}\right|=a_{k} u_{k}$ with u_{k} complex numbers of modulus 1 and define $U(t)=\sum_{k=1}^{N} \frac{u_{k}}{k} e^{2 \pi i \lambda_{k} t}$. By orthogonality, $S=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2} \phi(t) U(t) \mathrm{d} t$. The second step will consist in correcting U into V in such a way that $\|V\|_{\infty} \leq A$ where A is a constant then we multiply by a_{k} and sum over k to get

$$
\lim _{T \rightarrow+\infty} \frac{1}{T}\left|\int_{-T / 2}^{T / 2}(U(t)-V(t)) \phi(t) \mathrm{d} t\right| \leq \alpha S
$$

Then, as

$$
S=\lim _{T \rightarrow+\infty} \frac{1}{T}\left(\int_{-T / 2}^{T / 2} \phi(t) V(t) \mathrm{d} t+\int_{-T / 2}^{T / 2} \phi(t)(U(t)-V(t)) \mathrm{d} t\right)
$$

we obtain

$$
S \leq\|V\|_{\infty} \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|\phi(t)| \mathrm{d} t+\alpha S
$$

that is

$$
S \leq \frac{A}{1-\alpha} \lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}|\phi(t)| \mathrm{d} t
$$

as desired.

9. References

[1] Godfrey Harold Hardy and John Edensor Littlewood. A new proof of a theorem on rearrangements. Journal of the London Mathematical Society, 1(3):163-168, 1948.
[2] O Carruth McGehee, Louis Pigno, and Brent Smith. Hardy's inequality and the 11 norm of exponential sums. Annals of Mathematics, pages 613-618, 1981.
[3] Fedor L'vovich Nazarov. On a proof of the littlewood conjecture by mcgehee, pigno and smith. Algebra i Analiz, 7(2):106-120, 1995.

