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Littlewood Conjecture

In 1948 appears at the end of an article signed by Hardy and Littlewood
the following question known as the Littlewood conjecture : let
λ1 < · · · < λN a sequence of N distinct integers. Let

ϕ(x) =
N∑

k=1

e2iπλkx and ∥ϕ∥1 =
∫ 1

2

− 1
2

|ϕ(x)|dx .

Then can we (always) find a positive constant c such that

∥ϕ∥1 ⩾ c lnN.
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Mc-Gehee, Pigno and Smith Theorem (1981)

The solution was found almost simultaneously and with different
methods, by Konyagin, then by McGehee, Pigno and Smith.

Theorem (MPS solution of the Littlewood conjecture )

There exists A ⩾ 1 such that, for all finite sequence λ1 < · · · < λN of
integers and all sequence a1, . . . , aN of complex numbers we have

N∑
k=1

|ak |
k

⩽ A

∫ 1
2

− 1
2

∣∣∣∣∣
N∑

k=1

ake
2iπλkx

∣∣∣∣∣ dx .
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On The Constant In The Littlewood Problem

Several mathematicians have already worked on the subject of
quantifying the constant :

McGehee, Pigno and smith proved that we can take c =
1

128
.

Stegeman proved that c ⩾ 4
π3 .

In the case λk = k, using well-known properties of Dirichlet kernel
defined as follow

DN(x) =
N∑

k=1

e ikx ,

we obtain c ⩾
1

π
.
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Nazarov extended the result of MPS the case of real frequencies
λ1 < · · · < λN verifying λk+1 − λk ⩾ 1.

Theorem (Nazarov 1995)

Let T > 1, then there exists a strictly positive constant AT such that, for
all real sequence λ1 < · · · < λN verifying λk+1 − λk ⩾ 1 and all sequence
a1, . . . , aN of complex numbers we have

N∑
k=1

|ak |
k

⩽ AT

∫ T
2

− T
2

∣∣∣∣∣
N∑

k=1

ake
2iπλkx

∣∣∣∣∣ dx .
Problem : Explicit form of the constant AT ? ? ?
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Quantitative Version Of Nazarov Theorem

Theorem

Let T ⩾ 2. Then there exists a strictly positive constant A (independant
of T) such that, for all real sequence λ1 < · · · < λN verifying
λk+1 − λk ⩾ 1 and all sequence a1, . . . , aN of complex numbers we have

N∑
k=1

|ak |
k

⩽
A

T

∫ T
2

− T
2

∣∣∣∣∣
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First step

Let NT a strictly positive integer. As k + NT ⩽ k(1 + NT ), for k ⩾ 1,
then

N∑
k=1

|ak |
k

⩽ (1 + NT )
N∑

k=1

|ak |
k + NT

,

and we can prove that
N∑

k=1

|ak |
k + NT

⩽ BT to get

AT = (1 + NT )BT
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We write |ak | = akuk where |uk | = 1. Let Ij =
q
2j , 2j+1

q
,

fj(x) =
∑

r+NT∈Ij

ur
r + NT

e−2iπλr x and L0(x) =
N∑
j=1

fj(x)

Lemma (1)

There exist α ∈ ]0, 1[ such that, for 1 ⩽ k ⩽ N∣∣∣∣∣
∫ T

2

− T
2

L0(x)e
2iπλkxφ(x)dx − uk

k + NT

∣∣∣∣∣ ⩽ 1− α

k + NT
(1)
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Let ε a small real number, hj a function verifying ℜ(hj) = |fj | and φ(x)
as previously defined. We introduce

L1(x) =
N∑
j=1

fj(x)e
−ε(hj+1(x)+...+hN (x)).

Lemma (2)

Let α be the constant in lemma 1. For 1 ⩽ k ⩽ N,∣∣∣∣∣
∫ T

2

− T
2

(L0 − L1)(x)e
2iπλkxφ(x)dx

∣∣∣∣∣ ⩽ 2α
3

k + NT
(2)
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Proof

Lemma (1) + lemma (2) implies the theorem with

N∑
k=1

|ak |
k + NT

⩽
3

α
∥L1∥∞∥φ∥∞∥ϕ∥1,

thus we get

N∑
k=1

|ak |
k

⩽ (1 + NT )
N∑

k=1

|ak |
k + NT

⩽
3

α
(1 + NT )∥L1∥∞∥φ∥∞∥ϕ∥1.
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We multiply both inequalities (1) and (2) by |ak |, using the triangle
inequality and summing over k, we get

∣∣∣∣∣
N∑

k=1

|ak |
k + NT

−
∫ T

2

− T
2

L0(x)ϕ(x)φ(x)dx

∣∣∣∣∣ ⩽ (1− α)
N∑

k=1

|ak |
k + NT

.

∣∣∣∣∣
∫ T

2

− T
2

(L0 − L1)(x)ϕ(x)φ(x)dx

∣∣∣∣∣ ⩽ 2α

3

N∑
k=1

|ak |
k + NT

Adding these two inequalities, we get

α

3

N∑
k=1

|ak |
k + NT

⩽

∣∣∣∣∣
∫ T

2

− T
2

L1(x)ϕ(x)φ(x)dx

∣∣∣∣∣ ⩽ ∥L1∥∞∥φ∥∞∥ϕ∥1

And finally,
N∑

k=1

|ak |
k + NT

⩽ BT∥ϕ∥1

where BT =
3

α
∥L1∥∞.∥φ∥∞.
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Quadratic frequences : λk = k2

Theorem (Zalcwasser 1936)

There exists C > 0 such that

C
√
N ⩽

∫ 1

−1

∣∣∣∣∣
N∑

k=0

e iπk
2x

∣∣∣∣∣ dx ,

we would like to generalise this outcome to trigonometric polynomial of
the following form

N∑
k=0

ake
iπk2x ,

for any sequence (ak)1⩽k⩽N of complex numbers.
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Result

Theorem

There exists C > 0, such that for any sequence ak of complex number,
we have

∫ 1

−1

∣∣∣∣∣
N∑

k=0

ake
iπk2x

∣∣∣∣∣ dx ⩾ C min
0⩽k⩽N

|ak |
1

1−θ

|a0|+
∑
k⩾1

|ak − ak−1|


−θ
1−θ √

N

where θ ∈
]
1
2 , 1

[
.
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Key words of the proof :

Chadi SABA Quantitative version of Nazarov’s theorem 14 / 16



Introduction
Main result

Particular case

Motivation and aim
Result and sketch of proof

Result

Theorem

There exists C > 0, such that for any sequence ak of complex number,
we have

∫ 1

−1
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N∑

k=0

ake
iπk2x
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|ak |
1

1−θ

|a0|+
∑
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|ak − ak−1|
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−θ
1−θ √

N

where θ ∈
]
1
2 , 1

[
.

Key words of the proof :

Residue theorem
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Result

Theorem

There exists C > 0, such that for any sequence ak of complex number,
we have

∫ 1

−1
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Key words of the proof :

Residue theorem

Continued fraction

Layer Cake representation

Interpolation
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