

université [®]BORDEAUX

Quantitative version of Nazarov's theorem

Chadi SABA

University of Bordeaux

25 Octobre 2022

Contents

Introduction

- Littlewood Conjecture
- Solutions to The Conjecture
- Case Of Real Frequencies

Main result

- Quantitative Version Of Nazarov Theorem
- Sketch of the proof

3 Particular case

- Motivation and aim
- Result and sketch of proof

Littlewood Conjecture Solutions to The Conjecture Case Of Real Frequencies

Littlewood Conjecture

In 1948 appears at the end of an article signed by Hardy and Littlewood the following question known as the Littlewood conjecture : let $\lambda_1 < \cdots < \lambda_N$ a sequence of N distinct integers. Let

$$\phi(x) = \sum_{k=1}^{N} e^{2i\pi\lambda_k x}$$
 and $\|\phi\|_1 = \int_{-\frac{1}{2}}^{\frac{1}{2}} |\phi(x)| \, \mathrm{d}x.$

Then can we (always) find a positive constant c such that

 $\|\phi\|_1 \geqslant c \ln N.$

 Introduction
 Littlewood Conjecture

 Main result
 Solutions to The Conjecture

 Particular case
 Case Of Real Frequencies

Mc-Gehee, Pigno and Smith Theorem (1981)

The solution was found almost simultaneously and with different methods, by Konyagin, then by McGehee, Pigno and Smith.

Littlewood Conjecture Solutions to The Conjecture Case Of Real Frequencies

Mc-Gehee, Pigno and Smith Theorem (1981)

Theorem (MPS solution of the Littlewood conjecture)

There exists $A \ge 1$ such that, for all finite sequence $\lambda_1 < \cdots < \lambda_N$ of integers and all sequence a_1, \ldots, a_N of complex numbers we have

$$\sum_{k=1}^{N} \frac{|a_k|}{k} \leqslant A \int_{-\frac{1}{2}}^{\frac{1}{2}} \left| \sum_{k=1}^{N} a_k e^{2i\pi\lambda_k x} \right| dx$$

 Introduction
 Littlewood Conjecture

 Main result
 Solutions to The Conjecture

 articular case
 Case Of Real Frequencies

On The Constant In The Littlewood Problem

Several mathematicians have already worked on the subject of quantifying the constant :

글 🖌 🔺 글 🕨

 Introduction
 Littlewood Conjecture

 Main result
 Solutions to The Conjecture

 Particular case
 Case Of Real Frequencies

On The Constant In The Littlewood Problem

• McGehee, Pigno and smith proved that we can take $c = \frac{1}{128}$.

э

∃ ► < ∃ ►</p>

 Introduction
 Littlewood Conjecture

 Main result
 Solutions to The Conjecture

 articular case
 Case Of Real Frequencies

On The Constant In The Littlewood Problem

• Stegeman proved that $c \ge \frac{4}{\pi^3}$.

글 🖌 🔺 글 🕨

 Introduction
 Littlewood Conjecture

 Main result
 Solutions to The Conjecture

 Particular case
 Case Of Real Frequencies

On The Constant In The Littlewood Problem

• In the case $\lambda_k = k$, using well-known properties of Dirichlet kernel defined as follow

$$D_N(x) = \sum_{k=1}^N e^{ikx},$$

we obtain $c \ge \frac{1}{\pi}$.

э

글 🖌 🔺 글 🕨

Introduction	
Particular case	Case Of Real Frequencies

Nazarov extended the result of MPS the case of real frequencies $\lambda_1 < \cdots < \lambda_N$ verifying $\lambda_{k+1} - \lambda_k \ge 1$.

∃ < n < 0</p>

Case Of Real Frequencies

Theorem (Nazarov 1995)

Let T > 1, then there exists a strictly positive constant A_T such that, for all real sequence $\lambda_1 < \cdots < \lambda_N$ verifying $\lambda_{k+1} - \lambda_k \ge 1$ and all sequence a_1, \ldots, a_N of complex numbers we have

$$\sum_{k=1}^{N} \frac{|a_k|}{k} \leqslant A_T \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| \sum_{k=1}^{N} a_k e^{2i\pi\lambda_k x} \right| \, \mathrm{d}x.$$

3 K K 3 K

э

Introduction	Littlewood Conjecture
Main result	Solutions to The Conjecture
Particular case	Case Of Real Frequencies

Theorem (Nazarov 1995)

Let T > 1, then there exists a strictly positive constant A_T such that, for all real sequence $\lambda_1 < \cdots < \lambda_N$ verifying $\lambda_{k+1} - \lambda_k \ge 1$ and all sequence a_1, \ldots, a_N of complex numbers we have

$$\sum_{k=1}^{N} \frac{|a_k|}{k} \leqslant A_T \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| \sum_{k=1}^{N} a_k e^{2i\pi\lambda_k x} \right| \, \mathrm{d}x.$$

Problem : Explicit form of the constant A_T ???

Quantitative Version Of Nazarov Theorem Sketch of the proof

Quantitative Version Of Nazarov Theorem

Theorem

Let $T \ge 2$. Then there exists a strictly positive constant A (independent of T) such that, for all real sequence $\lambda_1 < \cdots < \lambda_N$ verifying $\lambda_{k+1} - \lambda_k \ge 1$ and all sequence a_1, \ldots, a_N of complex numbers we have

$$\sum_{k=1}^{N} \frac{|\mathbf{a}_k|}{k} \leqslant \frac{A}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| \sum_{k=1}^{N} \mathbf{a}_k e^{2i\pi\lambda_k x} \right| \mathrm{d}x.$$

Let N_T a strictly positive integer. As $k + N_T \leq k(1 + N_T)$, for $k \geq 1$, then

$$\sum_{k=1}^{N} \frac{|a_k|}{k} \leqslant (1 + N_T) \sum_{k=1}^{N} \frac{|a_k|}{k + N_T},$$

and we can prove that
$$\sum_{k=1}^{N} \frac{|a_k|}{k + N_T} \leqslant B_T \text{ to get}$$
$$A_T = (1 + N_T)B_T$$

A 10

2

* 注入 * 注入

Introduction Main result articular case Quantitative Version Of Nazarov The Sketch of the proof

We write
$$|a_k| = a_k u_k$$
 where $|u_k| = 1$. Let $I_j = [[2^j, 2^{j+1}][,$
 $f_j(x) = \sum_{r+N_T \in I_j} \frac{u_r}{r+N_T} e^{-2i\pi\lambda_r x}$ and $L_0(x) = \sum_{j=1}^N f_j(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Introduction Main result Particular case Quantitative Version Of Nazarov Theorem Sketch of the proof

We write
$$|a_k| = a_k u_k$$
 where $|u_k| = 1$. Let $I_j = [\![2^j, 2^{j+1}]\!]$,
 $f_j(x) = \sum_{r+N_T \in I_j} \frac{u_r}{r+N_T} e^{-2i\pi\lambda_r x}$ and $L_0(x) = \sum_{j=1}^N f_j(x)$

Lemma (1)

There exist $\alpha \in]0,1[$ such that, for $1 \leqslant k \leqslant N$

$$\left|\int_{-\frac{T}{2}}^{\frac{T}{2}} L_0(x) e^{2i\pi\lambda_k x} \varphi(x) \, \mathrm{d}x - \frac{u_k}{k + N_T}\right| \leqslant \frac{1 - \alpha}{k + N_T} \tag{1}$$

イロト イヨト イヨト イヨト

Quantitative Version Of Nazarov Theorem Sketch of the proof

Let ε a small real number, h_j a function verifying $\Re(h_j) = |f_j|$ and $\varphi(x)$ as previously defined. We introduce

$$L_1(x) = \sum_{j=1}^N f_j(x) e^{-\varepsilon(h_{j+1}(x) + \ldots + h_N(x))}.$$

Chadi SABA

э

Introduction Main result Particular case	Quantitative Version Of Nazarov Theorem Sketch of the proof
---	--

Let ε a small real number, h_j a function verifying $\Re(h_j) = |f_j|$ and $\varphi(x)$ as previously defined. We introduce

$$L_1(x) = \sum_{j=1}^N f_j(x) e^{-\varepsilon(h_{j+1}(x)+\ldots+h_N(x))}.$$

Lemma (2)

Let α be the constant in lemma 1. For $1 \leq k \leq N$,

$$\left|\int_{-\frac{\tau}{2}}^{\frac{T}{2}} (L_0 - L_1)(x) e^{2i\pi\lambda_k x} \varphi(x) \,\mathrm{d}x\right| \leqslant \frac{\frac{2\alpha}{3}}{k + N_T} \tag{2}$$

э

Proof

Lemma (1) + lemma (2) implies the theorem with

$$\sum_{k=1}^{N} \frac{|a_k|}{k+N_T} \leq \frac{3}{\alpha} \|L_1\|_{\infty} \|\varphi\|_{\infty} \|\phi\|_1,$$

< ロ > < 回 > < 回 > < 回 > < 回 >

э

	Introduction Main result Particular case	Quantitative Version Of Nazarov Theorem Sketch of the proof
Proof		

thus we get

$$\sum_{k=1}^{N} \frac{|a_k|}{k} \leqslant (1+N_T) \sum_{k=1}^{N} \frac{|a_k|}{k+N_T} \leqslant \frac{3}{\alpha} (1+N_T) \|L_1\|_{\infty} \|\varphi\|_{\infty} \|\phi\|_1.$$

イロン イロン イヨン イヨン

æ

Quantitative Version Of Nazarov Theorem Sketch of the proof

We multiply both inequalities (1) and (2) by $|a_k|$, using the triangle inequality and summing over k, we get

4 A 1

★ ∃ ► < ∃ ►</p>

э

Quantitative Version Of Nazarov Theorem Sketch of the proof

$$\left|\sum_{k=1}^{N} \frac{|a_k|}{k+N_T} - \int_{-\frac{T}{2}}^{\frac{T}{2}} L_0(x)\phi(x)\varphi(x)\,\mathrm{d}x\right| \leqslant (1-\alpha)\sum_{k=1}^{N} \frac{|a_k|}{k+N_T}.$$
$$\left|\int_{-\frac{T}{2}}^{\frac{T}{2}} (L_0 - L_1)(x)\phi(x)\varphi(x)\,\mathrm{d}x\right| \leqslant \frac{2\alpha}{3}\sum_{k=1}^{N} \frac{|a_k|}{k+N_T}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Adding these two inequalities, we get

$$\frac{\alpha}{3}\sum_{k=1}^{N}\frac{|a_{k}|}{k+N_{T}} \leq \left|\int_{-\frac{T}{2}}^{\frac{T}{2}}L_{1}(x)\phi(x)\varphi(x)\,\mathrm{d}x\right| \leq \|L_{1}\|_{\infty}\|\varphi\|_{\infty}\|\phi\|_{1}$$

'문▶' ★ 문▶

э

And finally,

$$\sum_{k=1}^{N} \frac{|a_k|}{k+N_T} \leqslant B_T \|\phi\|_1$$

where
$$B_T=rac{3}{lpha}\|L_1\|_\infty.\|arphi\|_\infty.$$

・ロ・・ (日・・ (日・・ (日・

æ

Motivation and aim Result and sketch of proof

Quadratic frequences : $\lambda_k = k^2$

Theorem (Zalcwasser 1936)

There exists C > 0 such that

$$C\sqrt{N} \leqslant \int_{-1}^{1} \left| \sum_{k=0}^{N} e^{i\pi k^2 x} \right| \mathrm{d}x,$$

Motivation and aim Result and sketch of proof

Quadratic frequences : $\lambda_k = k^2$

we would like to generalise this outcome to trigonometric polynomial of the following form

$$\sum_{k=0}^{N} a_k e^{i\pi k^2 x},$$

for any sequence $(a_k)_{1 \leq k \leq N}$ of complex numbers.

Motivation and aim Result and sketch of proof

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k\ge 1} |a_{k} - a_{k-1}| \right)^{\frac{1}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

э

∃ ► < ∃ ►</p>

Motivation and aim Result and sketch of proof

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k\ge 1} |a_{k} - a_{k-1}| \right)^{\frac{1}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

Key words of the proof :

_ A

∃ ► < ∃ ►</p>

э

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k\ge 1} |a_{k} - a_{k-1}| \right)^{\frac{-\theta}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

Key words of the proof :

Residue theorem

-

Motivation and aim Result and sketch of proof

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k \ge 1} |a_{k} - a_{k-1}| \right)^{\frac{-\theta}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

Key words of the proof :

- Residue theorem
- Continued fraction

글 🖌 🔺 글 🕨

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k \ge 1} |a_{k} - a_{k-1}| \right)^{\frac{-\theta}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

Key words of the proof :

- Residue theorem
- Continued fraction
- Layer Cake representation

글 🖌 🔺 글 🕨

Result

Theorem

There exists C > 0, such that for any sequence a_k of complex number, we have

$$\int_{-1}^{1} \left| \sum_{k=0}^{N} a_{k} e^{i\pi k^{2}x} \right| \, \mathrm{d}x \ge C \min_{0 \le k \le N} |a_{k}|^{\frac{1}{1-\theta}} \left(|a_{0}| + \sum_{k\ge 1} |a_{k} - a_{k-1}| \right)^{\frac{-\theta}{1-\theta}} \sqrt{N}$$
where $\theta \in \left] \frac{1}{2}, 1 \right[$.

Key words of the proof :

- Residue theorem
- Continued fraction
- Layer Cake representation
- Interpolation

14/16

Motivation and aim Result and sketch of proof

References

- Hardy, G. H.; Littlewood, J. E. A new proof of a theorem on rearrangements. J. London Math. Soc. 23 (1948), 163–168.
- McGehee, O. Carruth; Pigno, Louis; Smith, Brent, Hardy's inequality and the L1 norm of exponential sums. Ann. of Math. (2) 113 (1981), no. 3, 613-618.
- Choimet, D.; Queffélec, H. Analyse mathématique : grands théorème du vingtième siècle. Calvage & Mounet 2009.

Nazarov, F. L. On a proof of the Littlewood conjecture by McGehee, Pigno and Smith. St. Petersburg Math. J. 7 (1996), no. 2, 265-275

- Zalcwasser, Z. Sur les polynomes associés aux fonctions modulaires. Studia Mathematica. 7 (1938), no 1, 16-35 ϑ .
- Mordell, L.J. The approximate functional formula for the theta function. Journal of the London Mathematical Society, 1(2) :68-72, 1926

A B M A B M

Motivation and aim Result and sketch of proof

Thank you

2

< ロ > < 回 > < 回 > < 回 > < 回 >