université "BORDEAUX

From Ingham's to Nazarov's inequality

Chadi SABA

Supervisors: Karim Kellay \& Philippe Jaming
04 June 2024

Exponential Sums

A non-harmonic trigonometric polynomial is an expression of the form

$$
\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}
$$

We are interested in lower bounds of the L^{1}-norm or the Besicovitch \mathcal{B}^{1}-norm of such trigonometric polynomials, where, for $1 \leq p<+\infty$, the Besicovitch \mathcal{B}_{p}-norms are defined by

$$
\|\Phi\|_{\mathcal{B}_{p}}^{p}=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{[-T / 2, T / 2]}|\Phi(x)|^{p} \mathrm{~d} x .
$$

Those norms can be seen as a substitute to $L^{P}([-1 / 2,1 / 2])$-norms to investigate non-harmonic trigonometric polynomials.

Littlewood Conjecture

In 1948, Littlewood tempted to ask the following question: Is it true that, when $n_{0}<n_{1}<\cdots<n_{N}$ are integers

$$
\int_{-1 / 2}^{1 / 2}\left|\sum_{k=0}^{N} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq \int_{-1 / 2}^{1 / 2}\left|\sum_{k=0}^{N} e^{2 i \pi k t}\right| \mathrm{d} t
$$

Littlewood did not explicitly ask this question and made a safer guess. He conjectured that, when $n_{0}<n_{1}<\cdots<n_{N}$ are integers, there exists a universal constant C such that

$$
L_{N}:=\inf _{n_{0}<n_{1}<\cdots<n_{N}} \int_{-1 / 2}^{1 / 2}\left|\sum_{k=0}^{N} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq C \ln (N+1) .
$$

for some constant

$$
C \leq \frac{4}{\pi^{2}}
$$

The first non-trivial estimate was obtained by Cohen who proved that

$$
L_{N} \geq C(\ln N / \ln \ln N)^{1 / 8}
$$

Subsequent improvements are due to Pichorides who proved that

$$
L_{N} \geq C \ln N /(\ln \ln N)^{2} .
$$

Solutions to the conjecture

Theorem (McGehee, Pigno \& Smith 1981)

For $n_{0}<n_{1}<\cdots<n_{N}$ integers and a_{0}, \ldots, a_{N} complex numbers,

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq \frac{1}{30} \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1}
$$

Theorem (Stegeman \& Yabuta 1982)

For $n_{0}<n_{1}<\cdots<n_{N}$ integers and a_{0}, \ldots, a_{N} complex numbers all of modulus larger than 1

$$
\int_{-1 / 2}^{1 / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi n_{k} t}\right| \mathrm{d} t \geq \frac{4}{\pi^{3}} \ln (N+1) .
$$

Quadratic frequencies

Let $a=\left(a_{k}\right)_{k=0, \ldots, N}$ be a sequence of complex numbers, we write

$$
\mathbb{E}[|a|]=\frac{1}{N+1} \sum_{k=0}^{N}\left|a_{k}\right| \quad \text { and } \quad\|\partial a\|_{1, N}=\left|a_{0}\right|+\sum_{k=1}^{N}\left|a_{k}-a_{k-1}\right|
$$

Thus for the constant sequence $a=1$, Zalcwasser proved the following

$$
\begin{equation*}
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{k=0}^{N} e^{2 i \pi k^{2} x}\right| \mathrm{d} x \geq C \sqrt{N}\left(\mathbb{E}\left[|a|^{2}\right]\right)^{1 / 2} \tag{1}
\end{equation*}
$$

for some $C \geq 0$. Our first result is an extension of (1)

Theorem (Jaming, Kellay \& Saba)

For every $\varepsilon>0$ there exists a constant C_{ε} such that if $a=\left(a_{k}\right)_{k=0, \ldots, N}$ is a sequence of complex numbers, then

$$
\begin{equation*}
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi k^{2} x}\right| d x \geq C_{\varepsilon} \sqrt{N}\left(\frac{\left(\mathbb{E}\left[|a|^{2}\right]\right)^{\frac{1}{2}}}{\|\partial a\|_{1, N}}\right)^{2+\varepsilon}\left(\mathbb{E}\left[|a|^{2}\right]\right)^{\frac{1}{2}} \tag{2}
\end{equation*}
$$

First Results in Real Frequencies Setting

Theorem (Hudson \& Leckband 1992)

For $\lambda_{0}<\lambda_{1}<\ldots<\lambda_{N}$ real numbers and a_{0}, \ldots, a_{N} complex numbers,

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{1}{30} \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1}
$$

Later, Nazarov showed that such a result holds as soon as $T>1$:

Theorem (Nazarov 1996)

For $T>1$, there exists a constant C_{T} such that, for $0<\lambda_{0}<\cdots<\lambda_{N}$ real numbers verifying $\left|\lambda_{k}-\lambda_{\ell}\right| \geq|k-\ell|$ and a_{0}, \ldots, a_{N} complex numbers,

$$
\begin{equation*}
\int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq C_{T} \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1} \tag{3}
\end{equation*}
$$

Theorem (Jaming, Kellay \& Saba 2023/2024)

Let $\lambda_{0}<\lambda_{1}<\cdots<\lambda_{N}$ be distinct real numbers and a_{0}, \ldots, a_{N} be complex numbers. Then

- we have

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{1}{26} \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1} .
$$

(1) If further a_{0}, \ldots, a_{N} all have modulus larger than $1,\left|a_{k}\right| \geq 1$ then

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq \frac{4}{\pi^{3}} \ln (N+1) .
$$

(1) Assume further that for $k=0, \ldots, N-1, \lambda_{k+1}-\lambda_{k} \geq 1$, then, for every $T>1$, there exists a constant $C(T)$ such that, for every $a_{0}, \ldots, a_{N} \in \mathbb{C}$,

$$
\frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq C(T) \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1} .
$$

$$
\frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t \geq C(T) \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{k+1}
$$

Moreover,
(1) for $T \geq 72$ we can take $C(T)=\frac{1}{122}$;
(3) for $1<T \leq 2, C(T)=O\left((T-1)^{15 / 2}\right)$.
(3) For $2<T<72,(10)$ follows from the case (b) with $T=2$.

L^{2}-setting

Theorem (Ingham 1936)

Let $\gamma>0$ and $T>\frac{1}{\gamma}$. Then there exist $0<A_{2}(T, \gamma) \leq B_{2}(T, \gamma)$ such that

- for every sequence of real numbers $\Lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{Z}}$ such that
$\lambda_{k+1}-\lambda_{k} \geq \gamma ;$
- for every sequence $\left(a_{k}\right)_{k \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}, \mathbb{C})$,

$$
A_{2}(T, \gamma) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \leq \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{2 i \pi \lambda_{k} t}\right|^{2} d t \leq B_{2}(T, \gamma) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}
$$

L^{2}-setting

Theorem (Kahane 1962)

Let $\Lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{Z}}$ such that $\lambda_{k+1}-\lambda_{k} \rightarrow+\infty$ when $k \rightarrow \pm \infty$. Then, for every $T>0$, there exist constants $0<A_{2}(T, \Lambda) \leq B_{2}(T, \Lambda)$ such that

$$
A_{2}(T, \Lambda) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2} \leq \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k \in \mathbb{Z}} a_{k} e^{2 i \pi \lambda_{k} t}\right|^{2} d t \leq B_{2}(T, \Lambda) \sum_{k \in \mathbb{Z}}\left|a_{k}\right|^{2}
$$

holds for every sequence $\left(a_{k}\right)_{k \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z}, \mathbb{C})$.

L^{1}-analogue of Kahane's Theorem

Theorem (Jaming, Kellay, Saba \& Wang 2024)

Let $\Lambda=\left(\lambda_{k}\right)_{k \in \mathbb{Z}}$ be an increasing sequence with $\lambda_{k+1}-\lambda_{k_{\tilde{\sim}}} \rightarrow+\infty$ when $k \rightarrow \pm \infty$. Then, for every $T>0$, there exists a constant $\tilde{A}_{1}(T, \Lambda)>0$ such that, if $\left(a_{k}\right)_{k \in \mathbb{N}} \subset \mathbb{C}$ is a sequence of complex numbers, and $N \geq 1$, then

$$
\tilde{A}_{1}(T, \Lambda) \sum_{k=0}^{N} \frac{\left|a_{k}\right|}{1+k} \leq \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=0}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t .
$$

If further $\sum_{k \in \mathbb{Z}} \frac{1}{1+\left|\lambda_{k}\right|}$ converges, then there also exists a constant
$A_{1}(T, \Lambda)$ such that, for every $\left(a_{k}\right)_{k \in \mathbb{Z}} \subset \mathbb{C}$ and every $N \geq 1$,

$$
A_{1}(T, \Lambda) \max _{k=-N, \ldots, N}\left|a_{k}\right| \leq \frac{1}{T} \int_{-T / 2}^{T / 2}\left|\sum_{k=-N}^{N} a_{k} e^{2 i \pi \lambda_{k} t}\right| \mathrm{d} t .
$$

Perspectives

(1) Validity of Nazarov's theorem in the case $T=1$;
(2) Generalization to sets with multidimensional structure;

显Hardy，G．H．，Littlewood，J．E．A new proof of a theorem on rearrangements．J．London Math．Soc． 23 （1948），163－168．
图 Choimet，D．，Queffélec，H．Analyse mathématique：Grands théorème du vingtième siècle．Calvage \＆Mounet 2009.
R Jaming P．，Kellay K．，Saba C．The Littlewood problem and non－harmonic Fourier series．Math．Ann． 389 （2024），1939－1961．
固 Jaming P．，Saba C．From Ingham＇s to Nazarov＇s inequality：a survey on some trigonometric inequalities．arXiv：2311．17714（2023）．

Thank you

